Potential Benefits of Wetland Filters for Tile Drainage Systems: Impact on Nitrate Loads to Mississippi River Subbasins
نویسندگان
چکیده
The primary objective of this project was to estimate the nitrate reduction that could be achieved using restored wetlands as nitrogen sinks in tile-drained regions of the upper Mississippi River (UMR) and Ohio River basins. This report provides an assessment of nitrate concentrations and loads across the UMR and Ohio River basins and the mass reduction of nitrate loading that could be achieved using wetlands to intercept nonpoint source nitrate loads. Nitrate concentration and stream discharge data were used to calculate stream nitrate loading and annual flow-weighted average (FWA) nitrate concentrations and to develop a model of FWA nitrate concentration based on land use. Land use accounts for 90% of the variation among stations in long term FWA nitrate concentrations and was used to estimate FWA nitrate concentrations for a 100 ha grid across the UMR and Ohio River basins. Annual water yield for grid cells was estimated by interpolating over selected USGS monitoring station water yields across the UMR and Ohio River basins. For 1990 to 1999, mass nitrate export from each grid area was estimated as the product of the FWA nitrate concentration, water yield and grid area. To estimate potential nitrate removal by wetlands across the same grid area, mass balance simulations were used to estimate percent nitrate reduction for hypothetical wetland sites distributed across the UMR and Ohio River basins. Nitrate reduction was estimated using a temperature dependent, area-based, firstorder model. Model inputs included local temperature from the National Climatic Data Center and water yield estimated from USGS stream flow data. Results were used to develop a nonlinear model for percent nitrate removal as a function of hydraulic loading rate (HLR) and temperature. Mass nitrate removal for potential wetland restorations distributed across the UMR and Ohio River basin was estimated based on the expected mass load and the predicted percent removal. Similar functions explained most of the variability in per cent and mass removal reported for field scale experimental wetlands in the UMR and Ohio River basins. Results suggest that a 30% reduction in nitrate load from the UMR and Ohio River basins could be achieved using 210,000-450,000 ha of wetlands targeted on the highest nitrate contributing areas.
منابع مشابه
Evaluation of nitrate nitrogen fluxes from a tile-drained watershed in central Iowa.
Nitrate N fluxes from tile-drained watersheds have been implicated in water quality studies of the Mississippi River basin, but actual NO3-N loads from small watersheds during long periods are poorly documented. We evaluated discharge and NO3-N fluxes passing the outlet of an Iowa watershed (5134 ha) and two of its tile-drained subbasins (493 and 863 ha) from mid-1992 through 2000. The cumulati...
متن کاملNavigating the socio-bio-geo-chemistry and engineering of nitrogen management in two illinois tile-drained watersheds.
Reducing nitrate loads from corn and soybean, tile-drained, agricultural production systems in the Upper Mississippi River basin is a major challenge that has not been met. We evaluated a range of possible management practices from biophysical and social science perspectives that could reduce nitrate losses from tile-drained fields in the Upper Salt Fork and Embarras River watersheds of east-ce...
متن کاملSources of nitrate yields in the Mississippi River Basin.
Riverine nitrate N in the Mississippi River leads to hypoxia in the Gulf of Mexico. Several recent modeling studies estimated major N inputs and suggested source areas that could be targeted for conservation programs. We conducted a similar analysis with more recent and extensive data that demonstrates the importance of hydrology in controlling the percentage of net N inputs (NNI) exported by r...
متن کاملModeling Impacts of Tile Drain Spacing and Depth on Nitrate-Nitrogen Losses
61 S in the Gulf of Mexico have documented a large area with seasonally depleted O2 levels (<2 mg L−1). Most aquatic species cannot survive at such low O2 levels. A reduction in NO3–N loading by 30% was initially recommended to reduce hypoxia in the Gulf of Mexico (Mitsch et al., 1999). Following a scientifi c reassessment that recommended a reduction of 45% (USEPA, 2007), the USEPA developed a...
متن کاملThe impact of fertilization and hydrology on nitrate fluxes from Mississippi watersheds
The watersheds of the Mississippi are some of the most intensively managed agricultural basins in the world. As such, they receive high loadings of nitrogen and export a large amount of nitrate to the drainage networks of the Mississippi River basin and coastal ocean. We find a positive correlation between fertilizer input and stream export of nitrogen. According to the correlation, 34% of appl...
متن کامل